N 70 3097 ¢

NASA CR1104ys

Technical Report 70-107
NGR 21-002-206
NGL 21-002-008

January 1970

A Methodology for

Unified Hardware-Software Design

Yaohan Chu
Oliver R. Pardo
Jeffrey Yeh

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

Technical Report 70-107 January 1970
NGR 21-002-206
NGL 21-002-008

A Methodology for

Unified Hardware-Software Design

Yaohan Chu
Oliver R. Pardo
Jeffrey Yeh

This research was supported in part by Grants NGR 21-002-206
and NGL 21-002-008 from the National Aeronautics and Space Adminis-
tration to the Computer Science Center of the University of Maryland.

Table of Contents

Abstract

Computer Design Language

A Methodology

Finding the largest number

W W ww

B~ N

Algorithm

Configuration and sequence chart
Statement description
Simulation

Buffer allocation

.

.

W oo~ N

I S T S S S R e

Problem description

Algorithm

Configuration

Sequence charts

Microprogram control configuration
Timing and control signals

Control word format

Statement description
Microprogram

Translation of relocatable code to executable code

L Ut Uttt Ut L
O 00~ U N

The input and output

Algorithm

Configuration

Sequence charts

Microprogram control configuration
Timing and control signals

Control word format

Statement description
Microprogram

References

13
15
23
25
27
29
32
32
37

40

40
49
53
56
65
67
70
74
84

88

Abstract

This report describes a methodology for unifying the

hardware and software design of a digital computer by mean of the

Computer Design Language (or CDL). The methodology is presented

in three examples: (a) finding the largest number among n given

numbers, (b) buffer allocation in an input-output control system,

and (c¢) translation of relocatable code to executable code. The

algorithms in these examples are all obtained from computer pro-

grams. Important steps of the methodology are shown in great details,

These are: description of the configuration by the CDL declaration

statements, translation of the flow chart into the sequence chart,

representation of timing and control signals, implementation by

microprogram control, description of sequential operations by the

CDL execution statements, production of microprogram, and simulation

of the design on the CDL Simulator.

2. A Methodology

By means of the CDL, a methodology has been developed for
unifying the hardware and software design. This methodology is shown
by the diagram in Figure 1. As shown, a piece of software or computer
program is studied and its algorithm is extracted and presented pre-
ferrably in the form of flow chart. Then, configuration for hard-
ware implementation of the algorithm is conceived, and the flow chart
is converted into the sequence chart. Both the configuration and the
sequence charts are next described by the CDL statements. This
description is punched into a deck of cards and simulated by the CDL
Simulator (16) for checking out the implementation. The result of the
siumlation is then used for evaluating the design. If the design is
not satisfactory, the algorithm is modified or even replaced, and
another design cycle follows. When the result becomes satisfactory,
the design is then documented. Documentation in the CDL is relatively
simple.

This report describes three examples whose algorithms
were extracted from the existing computer programs. Each example.
illustrates various steps of the methodology. The first example is
implemented by the sequential logic control, while the second and

the third examples by microprogram control.

configu-
ration and
sequence
\. charts

algorithm

unsatisfactory

descriptio

evaluation

satisfactéry

simulation
by the CDL
simulator

documen-
tation

Fig. 1 Block diagram illustrating the methodology

of unified hardware-software design

3. Finding the largest number

The first example is to find the largest number among n
unsigned binary number. This simple example is selected for the pur-

pose of introducing the CDL and the simulation by the CDL simulator.

3.1 Algorithm

An algorithm to find the largest number among given binary
numbers X(1),...,X(n) by programming is shown in Fig.2 where n is the
number of elements, m is the current largest element, k is the pointer
whick points to the element now in comparison, and j is the pointer
which points to the current largest element. As shown in Fig. 2, the
first comparison is between elements X(n) and X(n-1) from which the
larger is stored in m. The next comparison is between m and X(n-2),
between m and X(n-3) and so forth where m always stores the larger
element after each comparison. Pointer k begins from (n-1) and is
decremented after each comparison. The finding process terminates

when k reaches O.

start

jf;_nl
k<€--(n-1),
m¢~--X(n),

k=0 f » terminate

>
A
~
je—_kl
me-~-X (k) ,
h 4
k€g--k~-1

Figure 2 Flow chart of finding the largest number

among n numbers

3.2 Confipuration and Sequence Chart

Let the given unsigned binary integers be stored in memory
X with address register C and buffer register R. Let the capacity
of memory X be 1024 words and the word length be 24 bits. Assume
that ngmber n is stored in the first location and the integers in
the succeeding locations of the memory. Register J and K store re-
spectively pointers J and K. Register A stores the current largest
integer after each comparison. Comparison is done by a paralled
subtracter. In addition, there are control register T, switch START
and light FINI. These elements are shown in the block diagram of
Fig. 3.

The process of finding the largest element is shown in the
sequence chart of Fig. 4. After initialization during which register
C is reset to O and light FINI is turned to the OFF condition, the
first word is read out of memory X; this word contains number n.
Number n is then transferred to memory address register C so as to
read out the last elememt of the given n elements; this element is
stored in register A, The last second element is next read out of
memory X and stored in the buffer register R. The numbers in regis-
ters A and R are compared by the parallel subtracter. Terminal BOR(O)
is 1, this indicates that the unsigned binary integer in register A
is smaller than that in register R. 1In this case, the larger number
in register R is transferred to register A and the memory address
where this larger number is stored in memory X is transferred to
register J. The next element is then taken out of the memory and
compared with the number in register R. Again, the larger number and

its memory address are stored in register A and J respectively. This

J(0-9)

Cc(0~-9) € K(0-9)

X (0-1023,,1-24)

!
R (ADDR)

A (1-24) < R(1-24)
BOR (0)e=t parallel subtracter
T(0-3) FINT (ON,OFF)
w-—ro KO
clock a;a—-;decoder ! control
! K signals
10

Figure 3 Configuration for finding the largest number

START(ON)

L
C<-=0,

e omiehsimg g

FINI<-=OFF,

l
13

R¢-=X(C)

Ké~-R (ADDR)

J€—-K, |

C<¢=-K,

R¢-=X(C)

A€--R,
Ké-=countdn K,

FINI¢--ONi——3End
Ké€--countdn K Cé-=K
R¢—=X (C)
A%'**R; = .
< { BOR{0)=1)
J€--K,
#

Figure 4 Sequence chart of finding the largest number

process continues until K reaches 0; at that time, all the elements
are compared. The largest element is in register A and its memory

address is register J.

3.3 Statement Description

The above configuration and sequence chart for finding the

largest element is now described by the CDL statements.

Comment , configuration (L
Register, C(0-9), Saddress register

R(1-24), $buffer register

J(0-9), $store pointer j

K(0-9). Sstore pointer k

A(1-24). S$store current largest element

T(0-3), Scontrol register

Subregister, R(ADDR)=R(15-24),

Memory, X(C)=X(0-1023, 1-24),

Decoder, KT(0~-10)=T

Switch, START(ON) ,

Light, FINI(ON, OFF),

Terminal, DIFF(1-24)=A(1-24)8R(1-24)8BOR(1-24),

BOR(0-23)=A(1-24) *R(1-24) "+R(1-24) ' *BOR(1~24)+BOR(1-24) *A(1-24) ,
BOR(24)=0,

ClOCk, P:

Comment, here begins the comparison sequencec.
/START(ON) / C€-0, FINI€-QFF, T€-0,

J/RT(0) *P/ Re¢-X(C), Te-1, Sread out n
JKT(1)*P/ K<~R(ADDR) , Te-2, $store n in K

JRT(2)*P/ Ce~-K, Je-R, T€-3, $store n in J and C

10

/RT(3)*P/ Re-X(C), Te-4, $read out X(n)
/KT(&)*P/ A4-R, $store X(n)in A
Ké-countdn K, Sobtain (n-1)
T€~5,
/KT(5)*P/ IF (K=0) THEN (T¢-10) ELSE (T¢-6)
/RT(6)*P/ C¢-K, T<¢-7,
/RT(7)*P/ Re-X(c), T¢-8 $read next element X(C)
/KT(8)*P/ IF (BOR(0)=1) THEN (A&-R, J¢-K), T<-9

/KT (9)*P/ K€-contdn K, T€¢-5,
/RKT(10)*P/ FINI<-ON,
END
In the above description, the ternimal statement describes
the parallel subtractor. Terminals DIFF are the different outputs
of the subtracter. They are not needed, but are included for the sake

of completenress.

3.4 Simulation

Statement description 1lywhen pumched into a deck of cards,
is shown in the listing of Fig. 5. The first 12 lines and the last
line represent the system control cards. The last second through
eighth lines represent the simulation control cardsJ) The listing in
Fig. 5 and statement description 1 are essentially identical except
the slight differences in the statements and operator 'countdn'" being
defined as a special operator.

The first part of the simulation result is shown in Fig. 6.
The contents of registers C, J, K, T, A and R as well as those at
memory locations O through 8 are tabulated after the START switch is

turned to the ON position as well as at the end of the first through

seventh clock cycles.

Tipgve

¢ % MOUNT TADE 1090 ON A9s RINA NIT AND SAVE
T 3t CAVE THANK YOL)
TPA)er
TATTACU AO
T A Y <l 0y
TRE W MO cvelng
CEXSAIITE Herm
LR N CHIFNANT /0T /1R T7HIMEENDE
SN2
FTRANSLATE
HMATN
COMAENT ¢ CONFTIGURATION
RFATGTFR ClN=-111Ys
] R{1=-30%s
1 JEN=1114%5
1 v{Nn=111%s
1 AlT1=301Y,
1 T(N=2)
SU3RRFGISTFRs R{AMDRY=R (1730
MEIANRY & X{(C)1=X(0=7T7¢1=30N)
NECANER KT(N=12)=T
SWITCHSs STARTIONY ¢
1 FINT{ONSsOFF)
CLICK 2]
TERMINAL o BORAN=N,
1 ROR27=RORIO*¥ (A(3IN) t+R(A0)I+R{IZDI¥A(R0) 1 »
1 RORPA=ROARPTH{A(?T7YI4+R(DPTII4HR(2TIXA(DT) 1 4
1 ROR?S=RNRDAR (A(PAYT4RIDPAYI+R(2PAYXA(DPAY Y
3 BARPA4=RNRIEX(A(DEY 4R (PR) J4R{DR)HA(DPE Y

TERMIMAL o
1 BORP3=ANRIL¥*: (ALY 4R (DAY YHR(DAV HA(DL)1
1 BOR?2=BOR2Z23# (A{23) *+R{23)1)+R(23)%*A(23)
1 ROR21=RORI2¥(A{22VELRIDPDIVRRI(DPPIHA(D)1
1 ROR?2D=RORPTI# (A(P2T1) *4R{2TYI4R(P2TI®A(2T)¢
TFRMINAL

RORTI7=RORPO%*¥ (AL20) V4R D201 Y+RI20V¥A(2D Vs
OARTA=ZRARTTH (AT 7Y 4R T 7Y Y4R(VT7TIH*AL[T1IT)
BORIB=RARTA* (A(TAY T 4R ([TAYI+R{TAI¥A[1AY 1,
ROARTA=ROPTEX* (A(TEY T 4R {TIRYI4RETIBIFALTIRY
CTERMINAL
1 BARTA=0ARTAR (A{TAY E 4P (TAY AR (TAVRA(TAY 1
1 PARTI 2=0MPRT A% (A(T2) 4P (T2Y 4R T2)HA(TR) 0,
1 ROARIT=2RARII¥(A(TI2Y Y 4R T2 Y4R{TI2V¥A(T2) 1,
1 RARIN=AART T# {A{TTYT+RITIIYFP (T 1) ¥ALTT Y8

TERMINALS
1 RORNT=RORIO* (ALTO)Y E+R(TOYY4+R{TINDI*A(T0)
1 BOR06=BOROT7T#(A(OT7I*+R{(OTII+RIOTI*A(OT)
1 BOROS=RORNE* {A{DAI 1 4+R (DAY I+RIOAI*A(06)
1 Nne&y

UV U IV S

&
§
i
¥

ROROCA4=RORNEX* (A(NRI tLR(05)T14+R(0OB Y RAL
TFRIMINALS,
1 PRORNZA=ROROAX(ALNLY 4P (NLUYIH+RIDLYEA{INL Y T
1 PARN2=nORPAR% (A{N2314R {02 34R(N2)# 2N) ¢,
1 RARNT=0ARNI# (A{N2)1 4R (N2)1 4R (N2 XA(ND Y 8
TERVMINAL
9 PARNAN=DOENT®E (A{NTY 4D (NI Y YLR(NIYXRA(NT)

Fig. 5 Listing of the CDL deck for simulating the example of
finding the largest element

lla

CONAENT g HIFRE REATNS THE COAMPARTSON SEQUFNCE,
JETART(NANY/ =Ns FINT=NFF, T=n

STy *BY P=Y(C)s T=1
/KT (1)Y*PY/ K=R{ANDNRY, T=7
/¥T(D)Y%P/ =Ky J=Ks T=13
JET(2y%PY/ P=Y(C)s T=b
JYT (YD Yy A=l g
= FONTRM, s
T=r .
/RKTRY®PY TF(¥eFRQeQY THFEN (T=12) FLSF (T=6)
/MTLARYXDY C=K,4 T=7
IXT(T)y%DY/ P=X{C)y T=10
/T ANy xDYy TR PARAN TN 1) THEM (A=R, J=K3), T=11
/KTI1VY#P/ K=K g CONTNN, s T=5
/YT 12y xpy/ FINT=0N
A
FOPZEATOR Y(N=11)eCANTRN,
// VIN=11Y),S1IP 1 s PETLIRM
FND
T AT
¥*OUTPUT CLOCKIT)=CoRa oK sAsToX{NY o X{T)aX(2)aX ()Y (n)sX(F)aY ()
¥{(7yaX{1N)
HEWT T 1 CTART=NN
#fOAD

X{7=1N0)=1Ns5 21 s 1R e2Neg 7R 4RAsAR 4N
AN =0 gV ="gh=n

SR 1NN 1N

apEaTARE

Fig. 5, continued

aTdwuexa

€¢Crood00°
120000006 °

$¢000000"
120000300°

<£000000°
1¢20006000°

5¢000000°
12000000°

c¢000000°
120006000

$£000000°
12000000°

S£000000°
12000000°

§£000000"
12000000°

-

-

oa

"

JusweTd 3Is93ae] a2y3 BUIpUII 3O

2y3 40 3ITusal 10TIBRTNWIS 3yl

LC0DJ0
203330

£C0020
200230

LOG0I0
2060230

L00020
200030

400330
200020

L0000
200330

L00O0DO
200020

LQCOJ0
2000230

96023000
50030000°

960300G00"
62030000°

96020GG00"
S00300600°

95000C00°
§G000000°

35000000°
s0000000°

35000000°
s0030000°

950000600°
500022000°

95050000°
s0000000°

»

i

#

0

L]

L)

jo 3aed 3saT} 94l 9 814

923230
103000

930000
133300

902000
100300

902000
100000

903200
100000

900000
100000

900000
100000

903300
100300

52C00C00"°"" =
01000000°**° =
Lo*m=° = |

= AWIL HITTD
52000000°*°° =
21000000°°°° =

30**°* = |

= 3IWIL NI

i

5Z2000000°°°"°
J1000000°°°° =

s0°°°* = |

= JWI1 N307D
5200000G°%*°° =
21030000°°°° =
.VO‘.’O - .~.

= JAWIL %3073
52000000°°°° =
01000000°°°° =
mo...l - n—v

= 3JWIL I3
52000000°*°° =
01000000°°°° =
z0°°°s = |

= 3WI1 %2372
52000000°°°° =
210000006°°°° =
10°°** = |

= IWIL NID2TD
$¢000000° " =

310000Q00° """ =
AgTeee = |

R R R S A s L ST,

JyJuClou® ™ = 213030
€30000 GIn30200° " = w3630 5130C6003°*°* = ¢£d23022
D0G30CD 0%020200°*** = ¥ BLAN VIS B R

L{50°%° = 21¢2°° =T Lagcage® =)
el N/
S134dvT 3wl L 31D2AD 133v1
A R AR R R R Rk R KRR ARk kAR A R AR R S kX E Xk k&g

J%30C2023°°°* = J10020
S00000 C2020J003°**° = »UUOUU 3130035G3°*"* = £000232
3020092 0v0JI0000° " = o IvALLZ3oP="" = ¢

LGo0* = 3102 =1 0100°° = D
/dxl51LEM/
S13dv1 3Iul 3 373A3 3av
L i i I I s i R i T I s T T T IIIIITIY]

I%2GCUJ0°~"° = JT0000
S02000 02036000t *°° = %02CUC 51200000°°°* = £20020
200000 0702C0203°°°*° = 4 I?JI00000°°°° = ¥

L030° = ¥ 2102°° =70 3100 = 3
/de(y LN/
$733v7 36l 3 JI3AD T3dvT
FE KRR AR AR AR R SRR R SRR SRR KSR R RS R AR R R kK&

7000000 = 210090
S000GC0 02000000t °°° = »00000 61000000%°°° = £000D0
000C00 0%030000%°** = ¥ 03000002°%°°° = ¥

0100°*° = M 0102°** = 7r1 3100°%° = 3
/de{c i/
SI33¢7 INEL Y 3U2AD T3ia¥T
1232 T I T I T R TP R R E R P T Y PP s I ITIT T

3%300003°°°° = 210020
s0000C 020200000 °°° = »0J300C S10000232%°"* = Z0003J0
000000 0T00000N®*°® = 0ud0L003°°°" = ¢

CG100°° = J102°*°* =70 3100°%° = 3
/del{Z i/
$13d97T 3741 [3I2AD I8V

Rk bk rkkrkkb bk k kg kbl ke bk k ke kbkbksk

2%3063083°*°** = 210030
s00000 02030000t °*° = »00000 51200303*°%° = £000)0
000000 01030000°°*° = ¥ 00300203°°%° = ¢

0100°° = 030¢3°* =7r 0000°° = 3
/dx (1L
ST33IvT INNL < FI3AD 138v¥1

T odeddok kol kol ok ko ko ke kkk ok kb Rk kkkkdk bk k

2%3003503%°°° = J10030
500000 02030000t °°° = »00000C S1300000°%°°° = E0003D
0000090 01030000%*°° = o 30200333°°°° = ¥
0000°* = 0362 = r 2000°° = D
/detd)IN/
ST31v1 378l 1 334D 138v70
Gl ik bk kb ph ok ke kk ok ph ok kb ke bk ek
J72000037°°° = 310030
500002 0020000 =°* = »00GOO g1200000°*°° = £003030
2035000 00020000%°°° = o 330002037 = ¢
0030°° = M 33G3°° =7 2200°* = 3
NO = 1dvls$

1d0NYY¥3aLINT HILIMS

NITLITWALS 40 LN4L70

13

4, Buffer Allocation

The second example is buffer allocation which is taken from the
GETBUF routine of the Simple Input Output Control System (SIOCS) now being
developed. This example illustrates the hardware implementation of the input

output control system of a microprogrammed operating system.

4.1 Problem description

In the SIOCS, double buffers are used for each file except when the user
employs his own buffer scheme. When a file is being opened or redefined, the
SIOCS searches the available buffer chains, finds two buffers of proper size
from one of the buffer chains and assigns them to that file. When these two
buffers are no longer used, the SIOCS releases them and returns them to the
available buffer chains.

The GETBUF routine of the SIOCS performs the function of obtaining a
double buffers from the available buffer chain and then assigning them to
the file. An example of the available buffer chain is shown in Fig. 7. The
entry of this chain is in the Available-buffer-~chain Entry Table or ABC Entry
Table. The LINK field of this entry as shown in Fig. 7 contains the address
of the first buffer of this buffer chain, while the SIZE field of this entry
describes the size of the buffer. All buffers are initially linked in the
available buffer chains, and the ABC Entry Table contains all the entries for
the available buffer chains, each for the buffers of one size.

The GETBUF routine is called by the GETBUF macro instruction whose format
is shown in Fig. 8, where FILENAME is the name of the file to which the buffers
are assigned. To use this routine, the file must be previously opened; this
means that FILENAME must be the symbolic address of a File Control Block (FCB).

The format of a FCB, as an example, is shown in Fig. 9, where the parameter

Avallable-buffer-
chain ontry Table
S A T.IN¥

Avajilable=-buffer-chain

14

T
!
f
f
|
1
]
|
i
|
1
{
)
|
|

T —

Fig.,7 Structure of an Available-buffer-chain

' :
GETBUF : FILENAME

[

FPormat of the GETRUFP macro instruction

15

names are explained in Table 1. Note that the Unit Control Block mentioned

in Table 1 is a table which stores the status of an input or an output device.
Pointer IOBUF is the pointer which always points to the current input (or
output) buffer where the data are being read into (or being sent out), while
pointer PROBUF is the pointer which always points to the processing buffer,
from which the data currently being processed are obtained. All the other
fields, such as OC, CRTCL, BUSY, EOF, TYPE, AVBCT and UCB address are not used
by this GETBUF routine, and are thus not further described.

The inputs to the GETBUF routine are: the address of the FCB, the buffer
size in the FCB, the address of the ABC Entry Table, the ABC Entry Table and
the available buffer chains. The outputs from the routine are the two buffer
addresses which are placed in the third word of the FCB and in accumulator A.
If no buffers are available, accumulator A is returned with its contents being

0.

4.2 Algorithm

The algorithm for buffer allocation is shown in the flow chart of Fig. 10,
where the symbolic names are defined or explained in Table 2. As shown, the
algorithm beings by obtaining the buffer size from the fourth word of the File
Control Block (see Fig. 9) or

BUFSZE€~~S1ZE (FILENAME+3)
It then proceeds toc searching the ABC Entry Table, where P is a pointer which
scans the entries of the table. When the search finds the entry of that avail-
able buffer chain with the buffer size equal to the desired buffer size (i.e.
SIZE(P)=BUFSZE), the two addresses of the first two buffers (pointed by the
pointer Q) of the chain are obtained and stored in the left and right half

of accumulator A. The buffers are removed from the chain and the chain is

ot 0 Lt 6 o P P AT R A T e P A A AP AR G A ey PP e e

0ocC fTYPE,l

grorrsnam maarnad B A R BT AT AR - B i e ot e s

JILE NAME

UCB ADDRE33

I0BUF : PROBUFR

SIZk CRTCL BUSY EOP AVBCT

amea Sar. RETUEUN am s ——

Fig.9 Format of the File Control Block
(see text for explaination)

Table 1, Terms of the FCB in Fig. 9

16

Term Explanation
TYPE type of the file
0C an open/close indicator

UCB address

IOBUF

. PROBUF

SIZE

CRTCL

BUSY

EOF

AVBCT

address of the Unit- Control Block (UCB) of a device
a pointer for the input (or output) buffer

a pointer for the processing.buffer

buffer size

critical number of the processing buffer

buffer busy indicator

end-of~file indicator

a counter which counts the available words re-
maining in the processing buffer

Table 2, Symbolic names of the algorithm

17

Symbolic

name Explanation

BUFSZE a variable which represents the buffer size of a file

P a pointer which scans the Available-buffer-chain Entry Table

Q a pointer which scans an available buffer chain

FILENAME symbolic location of the FCB. (a known quantity)

TABLE symbolic location of the Available-buffer-chain Entry Table
(a known quantity)

SIZE(X) SIZE field of the word pointed by pointer X

LINK(X) LINK field of the word pointed by pointer X

WORD (X) a word pointed by pointer X

A accumulator

A(0-17) left half of the accumulator

A(18-35) right half of the accumulator

{....ﬂ

a symbol which denotes "assign to' or '"replaced by"

Entry

| 7

BUFSZE«=SIZE (FTLENANTH 3)
P ¢ TABLE ‘

A' 4 A
QAT T Y — 177 # - -
DI;'JI_‘J(})—-BUFiDéuﬁ -] I f—i‘““l

N LINK(F)
//_;_j
= Q ’ZO
N ‘7’
A(0=17) =0

T INT(Q)

|]

A(—-O feti — Q —

n
o 3 ‘
ﬂ\l:i/J

s

LINK(P)e-LINK(§Z]

~

JORD(FILENANME+2) e=A

Axit

2,10 Plow Chart for buffer allocation

19

again properly linked by putting LINK(Q) into LINK(P). These two buffer
addresses are next placed in the proper location of the File Control Block.
If the search results in finding no two buffers of the proper size, accumu-
lator A is reset to 0. 1In either case, the allocation is terminated.

As an example, consider an ABC Entry Table and two available buffer
chains as those shown in Fig. 11 where the numbers are the initial values.

Let FILEA be the symbolic address of the File Control Block shown in Fig. 12,
where 0's in the first and third fields of word FILEA+l indicates no informa-
tion and 1 in the second field indicates that this file is a tape file. Num-
ber 20 in word FILEA+3 indicates that buffer size of the file is of 20 memory
words. When the algorithm is executed, it finds that the buffer size required
by the file is 20-word and that the buffers with this size are available from
the table entry at location 102 in Fig. 11. The LINK fields of the buffers

of the available buffer chain are then scanned beginning from the entry, and
two such buffers whose addresses 201 and 271 in Fig. 11 are found. These
addresses are next placed in the third word of the File Control Block (i.e.
FILEA+2Z) in Fig. 14 and the available buffer chain is again linked after the
removal of these two buffers. The output after allocation is shown in Figs. 13
and 14. Notice that the two fields of the third word of FCB in Fig. 12 are
changed to 201 and 271 in Fig. 14 respectively. Meanwhile, in the ABC Entry
Table of Fig. 11, the Link field 201 for the buffer chain of size 20 in Fig. 11
is changed to 291 as shown in Fig. 13.

As another example, assume that the contents of the ABC Entry Table and
the available buffer chains in Fig. 13 which are the outputs from the first
example are used as the initial values of the second example. Let FILEB be
the symbolic address of a File Control Block shown in Fig. 15. When the GETBUF

routine is being executed, the buffer size is found from the FCB in Fig. 15

Available=buffer=
sntry Table

chain
ADDR.
101
102
103
104
105

20

Available-buffer-chains

S ADDR. " ADDR. ADDR,

OIZL LTIN’VL. 201 — 2’?1 , ZQ]_ i
10 o] —— 271 |] 201 - e J_«__wfz:_}
2 O 2 O 1 v v: 4 J: 4

e v } J £ ‘
30 0 - !
- 220 290! 31
o 5 | | 90 310

0 v

5 221 221 311

. 311 44— 0

r o s 4

; £ ;

270_' 34

Tle.11 An example of the Available- buffer—chain Tntry Table
and Available buffer—chains

ADDR.,
FILTA
FILEA+1
FILEA+ 2

FILEA+3

Plg.l12

File Control Block(FCB)

FILE NAME
ol 1 0| UCB ADDRESS
0 ' 0
20 o | ofo 0

FCB with address FILEA (input)

21

Availablembuffera s £ P e e b
chaln Entry Table - Available-buffor—chi. -
ADDR. 8IzE LINK 490
101 - 10 .0 o]
102 | 20 | 291 v ’
10 0 ' _] :
03| 3 0 310
104 | 4o 0 |
ADDR.
1
05 50 221 201 311
‘ A 311 +— 0
-~ J” v J
v r ;.
£ J H
270 340

Fig.13 The Available-buffer-chain Entry Table and Available-
buffer-chains (output of Example 1)

ADDR, File Control Block (FCB)
FILEA , }§§LE NAME
FILEA+1| O | 1 0| UCB ADDRESS
FILEA+2 201 271
FILEA+3| = 20 6ML ol o| . o0

" Fig.ll4 FCB with sddress FILEA (output)

FILEB
FILEB+1
FILEB+2

PILER+3

Fig.l5

File Control Block (FCB)

FILE NAME
0 1 0] UCR ADDRESS
0 0
4o 0 0|0 0

PCR with address FILEB

22

23

to be 40. The entry for the buffer chain of this size is found from the
ABC Entry Table in Fig. 13. Since its LINK field is O, this means that there
is no buffer of this size available, and accumulator A is reset to 0. There-
fore, the contents of the File Control Block, the ABC Entry Table and the

available buffer chain remain unchanged.

4.3 Configuration

The computer elements that are required for implementing the buffer
allocation algorithm are shown in the block diagram of Fig. 16 except the
control part to be described subsequently. As shown, there is a random-access
memory M where the File Control Block, the ABC Entry Table and the available
buffer chains are located. The memory has a capacity of 32,768 36-bit words
with a 15-bit address register MAR and a 36-bit register MB. There are two
15-bit registers FILENAME and ENTRY, a 9-bit register BUFSZE, a 36-bit accumu-
lator A, and two single-bit register READ and WRITE in addition to a 9-bit
parallel comparator and a 15-bit parallel adder. Register FILENAME stores
the address of the FCB of the given file. Register ENTRY stores a pointer
which scans the entries of the ABC Entry Table. Register BUFSZE stores the
buffer size of the given file. The accumulator is where the two buffex
addresses are assembled. The comparator compares for equality between the
contents of register BUFSZE and those of the leftmost 9-bits of the accumu-
lator. The adder adds the contents of register FILENAME to those of register
MAR and the resulting sum is placed in register MAR. Registers READ and WRITE
are used for activating respectively the read and write operations of the
Memory.

The above configuration for the processing unit is now described by

the following CDL declaration statements.

24

3Tun bursssooxd syl Jo uorjzeanbriyuod 91 °bta

131

ISppv¥Y
jexed

71

HNYNETIA

Joxexedwod
L°
\"}‘)
ZMNTT | . THZIS q47s4ng
<t A 5
TINIT w WHmNHm
G Lc) 8 0
(5€-0’89LC2E-0) W
CAMRILY
suteys xaiying
avay
IH0dY a04d

25

Comment, Configuration of the processing unit. (4.2)
Register, MAR(0-14), Saddress register
MB(0-35), Sbuffer register
ENTRY (0-14), Spointer to scan Entry Table
FILENAME (0-14) , Sstore the address of the FCB
A(0-35), $store two buffer addresses
BUFSZE(0-8), $store the desired buffer size
READ, $READ control register
WRITE, SWRITE control register
Memory, M(MAR)=M(0~-32768,0-35),

Subregister, MB(SIZE1)=MB(0-8), &SIZE field
MB(LINK1)=MB(21-35), SLINK field
A(SIZE2)=A(0-8), $SIZE field
A(LINK2)=A(21-35), SLINK field

Terminal, UNEQUL (0-8)=A(0-8)@BUFSZE, $comparator

4.4 Sequence charts

The sequence operations of the buffer allocation are shown in the sequence
chart in Fig. 17. It is assumed (a) the formats of the File Control Block,
the ABC Entry Table, and the available buffer chains are those in Figs. 9 and
7, (b) the File Control Block, the ABC Entry Table and the available buffer
chains ave initially stored in the main memory, (c) the address of the FCB of
the given file is initially stored in register FILENAME, and (d) the address
of the ABC Entry Table is stored in register ENTRY.

As shown in Fig. 17, the address FILENAME is first incremented by 3 and
the sum is then transferred to register MAR. A word is next read out of the

memory into buffer register MB which now stores the fourth word of the FCB.

Entrv
- - - -

17MAH « 3 | |

[MAR< MAR add FILENANT |

|
) 4

| READ « 1

[MBet (1AR) |

[fUPSZBQ—IB(ST2) | |)

[4MARémENTRY!

[READ « 1 |

[HBe=M(NAR) |

[« B |
!

(oL = 1)= WTRYé—countup W”TDY ? !

r,,,

= Auzwwz)({)

{kARénA(LINV)l

[BEAD « 1 |

| MBe=M(1iAR) |

[Ae=A(18-35)-0-0-0-0-EB(LINKZ)]

[Ae= 0} = fﬁA(LINKZ) o;)

LT g# ST
\

I ('MAR < ENTRY <J

{

MB(SIZEi}«_RUFSZQJ
} 1

[WRITE < 1 ;

! N M(hAR)énhB[:
.- - o %,,_,;:’*"-fvf)

{
% 1
MARe~ MAR add FILENAME] ,
: ' . Pip,17 The sequence
‘ MB &= A I : chart for buffer

4

' T ' allocation
; | WRITE &= 1 [
7

[h(VAR)éuh? | ;

vd &

27

UFSZE. These micro-

oo

The SIZE field of this word is transferred to register
operations are shown in Block 0 in Fig. 17. (See block number at top-right
corﬁer of each block.) In block 1 there is a loop searching for the entries
in the ABC Entry Table to find an entry whose SIZE field is equal to the con-
tents of BUFSZE. Block 2 tests availability of the buffers in the chain. If
no buffer is available as indicated by the LINK field of A being 0, accumu~
lator A is reset to 0. Otherwise, the two addresses of the two buffers are
stbred in register A,aé shown in block 3. Finally the ABC Entry Table is
updated as shown in block 4, and the two buffer addresses are stored in the

third word of the FCB of the file in block 5. At this time, the sequence is

terminated.

4.5 Microprogram Control Configuration

The control memory is a small but fast memory having a capacity of
255 36~bit words with an 8-bit address register CAR and a 36-bit buffer

register F. Each word in the control memory is called a control word or a

micro-instruction. In the control memory is stored a microprogram which con-

sists of a series of micro-instructions. Single-~bit register E indicates the
fetch (when 1) or the execution (when 0) of each micro-instruction. There

is é four-phase clock PIO—3). Each main memory cycle is chosen consisting of
four control memory cycles and each control memory cycle coincides with one
clock cycle. Register MC is used to sequence the four control memory cycles

in each main memory cycle. Register RUN is used for indicating the start (when
1) and the stop (when 0) status of the machine. Switch START is selected for
manual control of the start operation of the machine. The block diagram in
Fig. 18 shows the configuration of the control umit.

The above configuration may also be described by the following CDL state-

28

3TUn TOI3UOD @Yj JFO UOTIRANDTIIUOD QI°HTJI

. (€-0) oW
I23Unod
Teubts _ butyg
[}
ueumuo
P 0 . XTI MLV (€-0)d
, aNy
-— MD0TO
o e
g T
g ” L say
g% 7 5 T NOY
(9€-1°65Z-0) WD \
-) qv0 .
g ..

29

ments.

Comment , configuration for the microprogram control

Register, MC(0-3), Sregister for sequencing main memory cycles
CAR(1-8), $control memory address register
F(1-36), Scontrol word register
E, $CM fetch-execution control register
RUN, $start~stop register

Subregister, F(ADS)=F(1-8), Saddress field

Memory, CM(CAR)=CM(0~255,1-36) ,

Switch, START(ON) Sstart switch

Comment, each control memory cycle coincides with one clock cycle and each
main memory cycle coincides with four control memory cycles

Clock, P(0~3) $four~-phase clock

Comment, sequencing register MC as a ring counter.

/P(3) *RUN/ MC<t=cir MC

In the above description, each of the four bits of register MC represent
each of the four control memory cycles in one main memory cycle, and the se-
quencing of the four control memory cycles is accomplished by making register

MC to function as a ring counter.

4.6 Timing and Control Signals

Each main memory cycle is chosen to consist of four control memory cycles,
and each control memory cycle coincides with each clock cycle. Therefore,
there are 4 steps in each control memory cycle and 16 steps in each main memory
16 steps in each main memory cycle. The control signals for these 16 steps

are described by the following sequence of 16 labels,

30

Comment , description of the labels.

/MC(0) *P (0) *RUN/ $beginning of a main and a control memory cycle
/MC(0) *P (1) *RUN/

/MC(0) *P (2) *RUN/

/MC(0) %P (3) *RUN/ $end of a control memory cycle

/MC(1) %P (0) #RUN/ $beginning of a control memory cycle

/MC(1) *P(1) *RUN/

/MC(1) %P (2) ¥RUN/

/MC(1) *P (3) *RUN/ $end of a control memory cycle
/MC(2) *P (0) *RUN/ Sbeginning of a control memory cycle
/MC(2) *P (1) *RUN/

/MC(2) %P (2) *RUN/

/MC(2) *P (3) *RUN/ $end of a control memory cycle
/MC(3) *P (0) *RUN/ $beginning of a control memory cycle
/MC(3) *P (1) *RUN/

/MC(3) %P (2) *RUN/ E--0

/MX(3) %P (3) *RUN/ $End of both memory cycles

As shown in the above labels, the four steps in each control memory cycle

are controlled by the four phases of clock P(0-3), and the four control memory
cycles in each main memory cycle are controlled by the four states of ring
counter MC(0-3). Register RUN controls the generation of the sequence of the
16 control signals in a main memory cycle as indicated in Fig. 18.

During each main memory cycle, the data is read out of or written into
the main memory. It i1s now specified that the transfer of the main memory
address to register MAR and the initiation of the main memory read or write
must occur during the second step (i.e. /MC(0)#P(1)*RUN/). For a read opera-

tion, the word is available at buffer register MB during the sixth step

31

{(i.e. /MC(1)*P(1)*RUN/). For a write operation the word to be stored into
the memory is transfered into buffer register MB before the 12th step
(/MC(2) %P (3) *RUN/) .

If certain micro-operations occur in control memory cycle, the follow-
ing sequence of four labels is used,
/P(0)*RUNAE"/ F<-CM(CAR) $beginning of a control memory cycle

E<-1

/P(1)*RUNE"/
/P (2) *RUN*E "/

/P(3) *RUN*E"'/ CAR<~countup CAR Send of a control memory cycle

In the above sequence of labels, register E is used to control the advance
or stop of the 4 steps in a control memory cycle. When register E contains
a 0, the sequence of the labels exist; otherwise, it disappears.

Whenever the register E is set to 0, a micro-instruction is read out of
the control memory. It is now specified that the incrementing of the control
memory address register CAR and the initiation of the control memory read
must occur during clock phase P{3) of the preceeding control memory cycle,
and the control word becomes available at buffer register F during the first
clock phase P(0) of the current control memory cycle. Micro-operations acti-
vated by the micro-instruction in register F are executed between the first
clock phase P(0) of the current control memory cycle and the initiation for
the reading out of the next micro-instruction.

Note that, at the step with label /P(0)*RUN*E'/, register E is set to 1
at the same time a control word is transfered into register F. While the
register is reset to O at the last step of each main memory cycle (i.e.
/MC(3) #P(2) *RUN/) ; this causes the fetch of the next control word at the be-

ginning of the next main memory cycle

32

4.7 Control word format

The format of the control word is shown in Fig. 19. It consists of
three fields, the address field, the control-bit field and the constant field.
The address field contains a control memory address for micro-branching. The
constant field contains a constant. Each bit of the control-bit field con-
trols one or more micro-operations which are shown in Fig. 19. The assign-

ment of the control bits to the micro-operations is arbitrarily made.

4.8 Statement description

With the timing and control signals as well as the control word format
being established, it is8 now possible to describe the control signals by
means of labels for each micro-operation in the sequence chart of Fig. 15.
Each label is a logical AND of the timing signal, the clock signal and a
control bit. With the labels, execution statements can now be written for
each micro-operation or a group of micro-operations. And each block in Fig.
15 becomes one micro-instruction.

Each block in the sequence chart of Fig. 15 requires one main memory
cycle, and the micro-operations in the block are then assigned to the previous-
ly described timing and control signals (i.e., labels). The micro-operations
in each block is translated into one micro-instruction. In this manner, the
sequence chart can be described by the following CDL statements.

Comment , the buffer allocation sequence begins here (6)
Comment , start or stop operation.
/START(ON) / RUN<~1 ,MC<-1 ,MAR¢~3,
ENTRY¢=100, CAR<~0,E«=0,
Comment, fetch the micro=-instruction at location O.

/P (0) *RUN*E "'/ F<-CM(CAR) ,E<-1,

33

(0=»NO¥ 0—>Y) NYHL (0= (ZMNIT) ¥) 4T

(TYMNIT) GH-0~-0-0-0~-(SE~8T) ¥Y=»¥Y
Aoavmvmmgmhﬁmmmvmuwmmv AUINE dnyunod—»XINT) NFHL (T=T0EN0) 4T

(1EZIS) aN—>=ZSI0d
AH—>Y

GH~» (AVH) W ‘T-+ZLIGM
| Y—>
H7Sdng-> (1IZIS) gl
(IVW) H—>gil ‘ T=>d¥EY

HAVNHETIIA PP AVH—+UTH
O—-»NNA

(ZYNIT) ¥=> TN
KIINT >SN
(9€~-£2) d~0=>UVIH

|

F(23-36)

22

|20]21]

1617 18] |2

|

5

_BYT

e
control

14

¥

9|10[1L |121

F(1-8)
aderges

constant field

it field

Fig.19 Control Word Format

34

Comment, execute the micro-instruction a t location O.

/MC(0) *P (1) *RUN*F(13) / MAR<-MAR add FILENAME,

/MC(0) %P (1) *RUN*F(14) / READ¢-1,

/MC(1) *P (1) *RUN*F(14) / MB<-M(MAR) ,

/MC(2) *P (1) *RUN*F(19) / BUFSZE«-MB(SIZE1),

/MC(3) %P (2) #RUN/ E<¢-0,

Comment, fetch the micro-instruction at location 1.

/P(3)*RUN*E"'/ CAR<¢~countup CAR,

/P(0) *RUN*E "/ F<-CM(CAR) ,E<-1,

Comment , execute the micro-instruction at location 1.

/MC(0) *P (1) *RUN*F(10) / MAR<-ENTRY,

/MC(0) *P (1) *RUN*F(14) / READ¢-1,

/MC(1) %P (1) *RUN*F(14)/ MB<«-M(MAR) ,

/MC(1) *P (3) *RUN*F(18) / A¢-MB,

/MC(2) *P (1) *RUN*F(20) / IF(UNEQL=1) THEN (ENTRY<-countup ENTRY,CAR<-0)
ELSE (E<-0),

/MC(3) *P (2) *RUN/ E<-0,

Comment , initiate and fetch the micro-instruction at location 2.

/P(3)*RUN*E "'/ CAR¢-countup CAR,

/P(Q) 5RUN#*E "/ R<¢~CM(CAR) ,E<-1,

Comment , execute the micro-instruction at location 2.

/MC(3)#P (1) *RUN*F(22) / IF(A(LINK2)=0) THEN (A<-0,RUN<¢-0)

/MC(3) *P (2)*RUN/ E<-0,

Comment , initiate and fetch the micro~instruction at location 3.

/P(3)*RUN*E'/ CAR<~countup CAR,

/P(0)*RUN*E"/ F<4-CM(CAR) ,E<~1

Comment, execute the micro-instruction at location 3.

/MC(0) *P (1) *RUN*F(11)/ MAR«~A(LINK2)

/MC(0) *P (1) *RUN*F(14) /
/MC(1) *P (1) *RUN*F(14) /
/MC(2) *P (2) *RUN*F(21) #
/MC(3) *P (1) *RUN*F(22) /

/MC(3) *P(2) *RUN*/

[
[@a}

READ<-1,

MB<¢~M(MAR) ,
A<-A(18-350)-0-0~0-0-MB(LINK1),

IF (A(LINK2)=0)THEN (A<-0,RUN<-0),

E€¢-0,

Comment, initiate and fetch the micro-instruction at location 4.

/P(3) *RUN*E' /

/P (0) *RUN*E' /

CAR<-~countup CAR,

F¢-CM(CAR) ,E<-1,

Comment, execute the micro-instruction at location 4.

/MC(0) *P (1) *RUN*F(10) /
/MC(0) *P (1) *RUN*F(17)/
/MC(0) *P (3) *RUN*F(15) /
/MC(2) *#P (1) *RUN*F(17) /
/MC(3) *P (1) *RUN*F(9) /

/MC(3) #P (2) *RUN/

MAR<-ENTRY,
WRITE<-1,

MB (SIZE1) ¢-BUFSZE,
M(MAR) ¢«-MB ,
MAR«¢~0-F(23-36) ,

E4-0,

Comment, initiate and fetch the micro-instruction at location 5.

/P(3) *RUN*E*/

/P(0) *RUN*E"*/

CAR<-count upCAR,

F<-CM(CAR) ,E<-1,

Comment, execute the micro-instruction at location 5.

/MC(0) *P (1) *RUN*F(13) /
/MC(0) *P (1) *RUN*F(17) /
/MC(0) *P (3) *RUN*F(16)/
/MC(2) *P (1) *RUN*F(17) /

/MC(3) #P (1) *RUN*F(12) /

MAR<¢-MAR add FILENAME,

WRITE<~1,
MB¢-A,
M(MAR) «-MB
RUN<%-0
END

In the above, the initialization of all micro-operations is carried out

by the START switch.

There are six micro-instructions.

The beginning of each

36

micro-instruction, there are several execution statements. The first execution
statement describes the fetch of the micro-instruction and the remaining
statements describe the micro-operations that are executed by the micro-instruc-
tion. The fetch of the micro-instruction is initiated by setting register

E to 0 and the execution of the micro-instruction is initiated by setting
register E to 1. Register E is set to 1 during the first step of the execu~
tion of the micro-instruction, and it is reset to 0 by the START switch or dur-
ing the last step.

In the above description, the braching of the loop in the sequence chart
is accomplished by the following statement (whose control bit is in location
1,

/MC(2) *P (1) *RUN*F(20)/ IF(UNEQL=1) THEN(ENTRY<¥-countup ENTRY, CAR¢-0)
ELSE (E<-0),

If terminal UNEQL is equal to 1, then the following sequence occurs,

/MC(3) %P (2) *RUN/ E¢-0,
/P(3) *RUN*E" / CAR€-countup CAR,
/P(0) *RUN*E"/ F¢-CM(CAR), E<-1,

Since terminal UNEQL is equal to 1, register CAR is reset to 0 and later

again incremented by 1. The next micro-instruction is fetched at location 1.
Therefore, the sequence is branched back to the beginning of the loop.

If terminal UNEQL is not equal to 1, then the following sequence occurs,

/P(3) *RUN*E'/ CAR¢-countup CAR,

/P(0) *RUN*E" / F¢-CM(CAR) , E-~1,

Since terminal UNEQL is not equal to 1, register CA. is incremented by 1. The
next micro-instruction is fetched at location 2 because the contents of regis-

“ter CAR were 1. In this way, the micro-instruction exits from the loop.

37

4.9 Microprogram

The microprogram for the buffer allocation is shown in Figs. 20 and 21.
The microprogram in Fig. 20 shows the micro-operations for each control bit,
while that in Fig. 21 shows the 6 micro-instructions in octal. Each micro-
instruction specifies the execution of those micro-operations whose control
bits are 1. For example, the first micro-instruction has 1 in control bits
13, 14, and 19. Therefore, when this micro-instwuction is executed, the

following micro-operations at the specified control signals are performed,

/MC(0) *P (1) *RUN*F(13) / MAR<¢-MAR add FILENAME, (7
/MC(0) #P (1) *RUN*F(14)/ READ¢-1,
/MC(1) *P (1) #RUN*F(14) / MB<-M(CAR) ,

/MC(2) #P (1) *RUN*F(19) / BUFSZE<-MB(SIZE1),

These are the previously described execution statements in the micro-instruc-
tion located at address 0, except the one which resets register E to 0, which
occurs as the last step of each main memory cycle. Thus, the 1's and 0's in
each previously described micro-instruction is translated into 1's and O's.

This is the way that the microprogram in Figs. 20 and 21 is obtained.

38

w,nu ol o o] OM
I} of ol ol ol oot
i !
Nl o of ol ©of oo
ki OF ©f ol of © O,m.
o] O ©of © O~OW
(0—>NNY * 0—»V) NHHL (0= (ZANIT) ¥) AT | (1) d (5 PR N ol of il mi ool
_(TANIT) GW-0-0-0-0- (SE-8T) Y=Y | (2)d[@)IN| ol of of o — oo
(0—>d) ESTH (ANINZ dnaunod—»XAINT P
(Daj(gon| g Lol
* (SQV¥) I—»¥YD) NTHIL (T=T0ENA) IT N} O Al oj. 0 oo
. -
(TH2IS) ew—>E2840d | (1) 4| (CPR] o 01" ol oo
, WV | (€)d|(T)OW| ©f O =} O o ofo!
N> (YR | (T/d: (2D . B A
T—HEITEN | (D d| bR 5 | @ @])~
) 3 4 ’
g 1 :
V> .W (€)a (oo .,rw el o) Om O O et
HZ25d0d=» (THZIS) G | (£)d | (DOH]] o) o ofo]l 4o
= :
YR W= T (T I {TTOW it , i ﬁ {
T—>avad | (Dd[0ont 5 7} 7 O] 7 <o
H i |
 EWENETIL PpE ¥ =¥ (T E000H] o) | of o) o) o o
0—=>NM { (T) 2 (EPW| ~f of o o] o] o~
(ZINIT) Y=Y § (T)d| OO o oh ol = oo
AULNE=>¥VN | (T) 3 {0)oOW| ©f ©of —~ o] o] ~o!
(9e-£2) 2-0—>uvW [(1) d| EOH| o] o of of of o
R
mmm ot Omni of »xo;
g P OWnL OW ool
w“ Om .,O.M nuwnuw
g ot 9]

The microprogram for the buffer allocation

Control " Micro-instruction
Memory .
Address (Octal number)
0 0000604LODOODOO
1 000421200000
2 000000040000
3 000220140000
by 001412000002
5 00014L6DOOOODO 1
Figz.21 The mioroprogram for the buffer allocation

39

40

5. Translation of Relocatable Code to Executable Code

Most contemporary digital computers are designed to execute
machine instructions with absolute addresses (i.e., hardware addresses).
A program written in such machine instructions is called an executable
code. However, the computer user of today writes the program either
in a symbolic assembly language or in a symbolic procedural language.
Part of the task of translating a symbolic code to an executable code
is chosen as the third example.

The translation task normally occurs in two steps. In the
first step, the assembler (in the case of an assembly language) or
the compiler (in the case of a procedural language) translates the
program into an intermediate form, so that the user's program can
be linked with other subprograms to form one program. The program in

the intermediate form is a relocatable code because the program con-

tains information which allows it to be located at another absolute
address.

The second step consists of three functions: (a) assemblying
one or more relocatable elements into a complete program, (b) assigning
each subprogram an absolute address, and (c¢) translating the reloca-
table code into an executable code (i.e., changing all relative addresses
to absolute addresses). These three functions are often carried out
by a program commonly called a loader.

This example implements the third function of translating

relocatable code to executable code by means of a microprogram.

5.1 The Input and Output

The input to the loader is one or more relocatable elements.

41

Each relocatable element consists of two parts, (a) relocatable code

and (b) symbolic address tables. As mentioned, the relocatable code

is the intermediate form of the machine language instructions and datq
that result from the translation of an assembly language subprogram
or of a procedural language subprogram. A machine language instruc-
tion is usually made up of a non-address part (e.g., the op-code
part) and an address part. Since relocatable translation requires
only the adjustment of addresses, it is only necessary to distinguish
between the address part and the non-address part of the instructions.
Therefore, a relocatable code consists of a sequence of relocatable
words. Each relocatable word contains an address part or a non-address
part of an instruction. In this context, a data word can be viewed
as an instruction without an address part.

Figure 22 shows the five formats (called A,B,C,D, and E)
of the relocatable words. Each format has up to five fields: OP, FS,
II, FLD, and INC. The FLD field contains data, or the address part
of an instruction, or an index to a table. The FS field contains the
length of the FLD field in bytes (for convenience, a byte is defined
here as 3 bits)., The OP field identifies the FLD field as,
(a) data (OP=1)

(b) Relative Address (OP=2) This address references a location within

the subprogram relative to the subprogram address. At this ad-

dress, the executable code is to be loaded.

(c) Common Data Address (OP=3) This address references a data area

which is common to several subprograms.,

(d) External Address (OP=4) This address references an entry point

in other subprograms.,

42

oPp FS II FLD
l length of \\\ data part of
1 FLD field \\ instruction
& (in bytes) ngs\ or data word
T TS B 2 e
3 x 3 3%[Fs) bits

{a) Format A, indicating data
0)% FS 1T FLD
length of \Qbaddress relative
2 FLD field to the subprogram
(in bytes)~\\
Ny At R
3 A 2

(b} Format B, indicating relative address

>
3* (Fs) : bits

OP FS II FLD INC
ot e S D e e
length of [incre- index to address | possible i
3 FLD field | ment |in Common Symbol | increment or f
(in bytes) | ind. |Table decrement -i
T S—— b e
3 » 4 2 3% (FS) 3% (Fs) bits
{c} Format ¢, indicating common data address
op S Iz FLD INC
length of [incre- index to-address |possible i
4 FLD field |ment |in Undefined increment or I
(in bytes) | ind. |Symbol Table decrement |
(NS - e e I it P
3 4 2 3% (Fs) T 3w (rs) bits

(d) Format D, indicating external address

OP

5

[————
3 bits

(e} Format E, indicating the end of relocatable code

Figure 22 Relocatable Word Formats

(e) End of relocatable code (0P=5)

The above common data address and external address reference
locations outside of the subprogram. These addresses are symbolic and
are stored in the symbolic address tables to be described subsequently.
The II and INC fields are provided to give a numerical increment to
these symbolic addresses. If II is equal to 1 or 2, the address is
incremented or decremented, respectively by the contents of INC. 1f
II is equal to O, there is no INC field.

Figure 23 shows an example of a relocatable code where the
fields are separated by vertical lines and the numbers are octal.
Words 1,2,3,4,6,8,9,11,12,13,15, and 17 are relocatable words with
data (OP=1). Words 5,7,10, and 14 are those with relative addresses
(0P=2). Word 16 is one with a common data address. Word 18 is the
one with an external address. Word 19 is the one indicating the end
of the relocatable code. Note that the relocatable words in Figure 23
are of different lengths. Though they are shown as left-justified,
they are actually a string of bytes as shown in Figure 24. It is in
the format of Figure 24 that the relocatable words are stored in the
memory .

Symbolic address tables of a relocatable element contain
all the symbolic addresses that are required to link subprograms to-
gether, There are three symbolic address tables:

(a) Defined Symbol Table (DST) This table contains the symbolic

name of each entry point in the subprogram and its corresponding
relative address in the subprogram.

(b) Undefined Symbol Table (UST) This table contains the symbolic

10

11

13

14

15

16

17

18

19

44

Format
1 2 3 4 5 6 7 8 910 11 12 13 14 15 Type
1114J0l0 0 0 0 0 0 0 0 0 0 0 1] A

'1/14]J0/0 0o 0o 0o 0 0 0 0 0 O O 3| A

{1114/0l0o o o o 0o 0o 0 0 0 O 0O O] A

‘1] 71000 5 0o 0o o o0 ol A

2] slolo o 1 o 2 B

f1] 7/0lo 4 o 2 o o o A

(2] 5/0l0 0 1 0 0 B

f1J24f0f 0o 1 3 1 0o 0 0o 0o 0o o o0 o] A

11 700 2 o o o o0 o A

f2] s5foJo. 0o 1 o 1l B

1]14f0f0 1 3 1 0 0 0 0 0 0 0 0] A

11400 7 3 4 0 0o 3 0 0 0 0 O] A

1! 7lolo 7 7 4a 0 0 a A

27 5100 o 1 1 3| B

l1, 1lof 2] A

37 s5[1lo 0o o 1 ol o o 4 5 4 c

L1l 1ol 3] A

4] s5/o0lo o o 2 o D
5 E

OPR FS TI Fip S

Figure 23

Example of a Relocatable Code (in octal)

45

i1 6 0 0 6 6 0 0 O O 0 O 1
0 O 1‘!1 6 0 0 0O 0 0 0 0 2
0O 0 0 0 0 3§11 6 Ow 0 0 O 3
o 0 0 0 0 0 0 O o)l 3 4 4
0 5 0 0 0 O Oop2 2 4~X;* 0 5
1 0 231 3 4 'O 4 0 2 0 O 6
0tz 2 4 0 O vl o ol é”“o 7
o 1 3 1 0 0O 0o 0o O O O O 8
1 3 4 0 2 0 0O O O Oy 2 5“ 9
4 0 0 1 O 1§11 © O O 1 3 10
L1 0 o0 0 0 0 O O Ogil é 0 11
o 7 3 4 0 0O 3 0 0O 0 0 O 12
1 3 4 0 7 7 4 0 0 442 2 13
4 0 O 1 1 3jL 0 4 293 2 14
5 0 0 0 1 0O O 0 4 5 4@l 15
0O 4 34 2 4 0 0 0 2 0O} 5 1o
“ ~ S
one memory word
(36 bits)
Figure 24 Example of a Relocataole Code in the Memory

{(Double lines separate relocatable words
and all numbers are octal.)

46

name of each external address that appeared in the subprogram.
Each external address (OP=4) contains a link to an entry in this

table.

~~
O
Nt

Common Symbol Table {CS5T) This table contains the symbolic

name of each common data area reference in the subprogram. Each
common data address (0P=3) contains a link to an entry in this
table.
The formats of these tables in the relocatable element are not relevant
here and are thus not shown., However, an example of these three
tables as they appear in memory is shown in Figure 25; these tables
will be further referenced.

The output from the loader is a sequence of machine instructions
and data ready for loading into the memory. In order to properly
locate the sequence in the memory, the sequence is prefaced by one word
that contains the subprogram address.

Figure 26 shows an example of executable code. It is the
output from the translation of the relocatable code in Figure 24.

The instruction and data formats in Figure 26 follow those of IBM
7090/7094 computers. As mentioned, the first word holds the subprogram
address (170008)° It is assumed that the executable code is a part

of a larger program and is stored in words 65 through 75. As shown,
this example translates the 19 relocatable words into 12 machine
instructions because some of the machine instructions consist of both
address and data parts which arve described by more than one reloca-
table word., However, the contents of the FLD fields of relocatable
words 1,2,3,8,11, and 12 in Figure 23 correspond with words 65,66,67,

70,72, and 73, respectively, in Figure 26, because these data and

DST . VECPRG 1000
17000 {1001
DOT 11004
2423211005
,/"$<\“xk

| Pl st
¢sT L.12000
JARR 2007
10010 /2010
UST {3000
DOT 3017

INPUT
BUFFER
(relocatable
code)

3020

4000

OouUTPUT
BUFFER
{machine
instruction
sequence)

5000

Example of Tables and E

47

table link

uffers in the Memory

Word

Word

Word

Word

Word

Word

Word

Word

Word

Word

Figure 26

65

66

67

68

69

70

71

72

73

74

75

0 0 O 0 O i
c 0 O 0 0 0
0 0 O 0 9 0
0 0 O 0O 0 ~O
0 5 O 0 0 1
o 4 0 0 0 1
o 1 3 0 0 0
0 2 0 o0 0 1
o 1 3 0O 0O b'
o 7 3 0 0 0
o 7 7 0O O 1
2 1 0 6 4 2

Example of an Executable Code

48

49

instruction words have no addresses.

5.2 Algorithm

The loader performs the translation. (For simplicity, it
is assumed that the loader does not handle memory overlay.) The trans-—
lation can be described in three phases, In the first phase, the
relocatable elements are collected and references between subprograms
(which include common data references, subprogram entry points, and
external references) are tabulated. In the second phase, the external
references are matched with their respective entry points, and each
common data area, subprogram, and entry point are then assigned an
absolute address. 1In the thilrd phase, the relocatable code of each
subprogram is translated to executable code by assigning each relative
address an absolute address. The translation process to be described
here is limited to the third phase.

The translation first unpacks the relocatable code (see the
example in Figures 23 and 24) stored in the input buffer, then inter-
prets the op-field of each word of the relocatable code, and finally
places the ddta or the modified address assembled into a sequence of
machine-language instructions in the output buffer. The translation
process is shown in the flow chart in Figure 27. The relocatable
elements are in the input buffer, and the machine-language-instruction
sequence will be in the output buffer. Both input and output buffers
are indicated in Figure 25. As shown in Figure 27, the initial step
places the subprogram address in the output buffer. The first or next
relocatable word is read out of the input buffer for unpacking. The
unpacking process recognizes the beginning and the end of the reloca~-

table word as well as the fields of the word. The OP field is first

50

I

“35330q A0dIns 5T3
ur 3insea syn soeld
pue DNI Agq sssippe
nNTOsSge juswaIdeQ)

2pOD 8TgRINDSXS 03
SPOS 9TCR3IBD0TSI JO UOT3RISURI] 3Y3 HUTMOUS 1IeUyd MOTJ

L7 mﬁsmam

.

E

*I®zIyng 3ndanc a8yl
Ut 31nssx eys soeid
pue DONI Ag ssoappe
23INTOSOR JuUsSwWaIdUT

.

S wwem——

z=IT T=IT
(= —
: ,) O=11
180 woII XSpPUul 9yl
buTtsn ‘IS |SUL WOII
SSBAPDE SUY SABTINSY
)
O UT XSPUI Igisng andano 8yay ut
3ya Ag p93201pUT ITTA UT HepUT 8yl Ag aTnsax sy =zoeTd pus
I8n ®U3 wox PeLRDTRUT IE8D SuUl wWwoII sseuppe weiboxdgns *xeIzyng andano oyl
PPUT SU3 9ABRTIISY SSDAPPE "BYL SADTIRSY 84yl 03 g7 DPY UT B3RD Byl 8leTd
SE88IppE JRUASA%N SSDIPPE BRRD UOWUOs SsolJppe o9ATI3IRIOW Rl
C=d0 ey % Z=d0 VO T=d0
| d0 1 ,
UOTIRUTWIDL §=d0 M
. TRIOM
27gele20Tex 3X8U 8yl prey
=
cxezIng andano
DYl OJUT PIPROT 8¢ 031 ST
sousnbss syz yoTym 3@
SS8IpPE 93NTOSgR 20rTd

I

Azaqus

51

decoded and the following address modification occurs.

(a)

(b)

(c)

(d)

If OP is 1, it indicates data (format A shown in Figure 22).
Since it is not an address, no address modification is required.
The FS bytes of the FLD field are placed in the next available
bytes in the output buffer, where FS denotes the size of the
FLD field in bytes.

If OP is 2, it indicates a relative address (format B). The FS
bytes of the FLD field (the relative address) is added to the

subprogram address (such as 17000, in Figure 26). The sum is placed

8
in the next FS bytes of the output buffer.

If OP is 3, it indicates a common data address (format C). The
index in the FLD field (which is an address relative to CST)

(such as 2000, in Figure 25). The absolute address stored at

8
this location is rvetrieved. If field II contains 1 or 2, the
contents of the INC are added to or subtracted from the absolute
address, respectively. If field II contains 0, there is no address
modification. In any of the three cases, the resulting address

is then placed in the next FS bytes of the output buffer.

If OP is 4, it indicates an external address (format D). The FS
bytes of the FLD field (which is an address velative to UST) is
added to the address of the Undefined Symbol Table (UST) (such

as 30008 in Figure 25). The index stored at this location is
retrieved and added to the address of the Defined Symbol Table

(DST) (such as 1000_ in Figure 25). Then, the absolute address

8
at this location is retrieved. If field II is O, no further
modification of the address is required. If field IT is 1 or 2,

the contents of the INC field are added to or subtracted from

the absolute address, respectively. 1In any of the three cases, the

52

absolute address is placed in the next FS bytes of the output
buffer.
(e) If OP is 5, it dindicates the end of the relocatable code (format

Y . N . e ST ST S ot b e E o o
E). At this point, the translation is terminated.

After one of the above operations is performed, the next relocatable
word is vead out of the input buffer . Unpacking, decoding and address
modification continues on until the end of the relocatable code. At
this time, the translation is completed. This tranlation process

will be further described in more detail later when the sequence charts
are presented.

As an example, let the relocatable code in Figures 23 and 24
be the dinput; the output from the translation is the executable code
shown in Figure 26. Word 1 in Figure 26 contains the absolute address
170008 at which the subsequent machine-language-instruction sequence
is to be loaded. Words 2 through 64 are assumed to be some other part
of the subprogram. Relocatable words 1, 2, and 3 in Figure 23 contain
data and are thus translated without modification to words 65, 66, and
67 of the output buffer as shown in Figure 26. Relocatable word 4
in Figure 23 also contains data and is translated without modification
to the first 7 bytes of word 68 in Figure 26. Relocatable word 5 in
Figure 23 stores a velative address; thus, the contents of the FLD
field are added to the subprogram address (170008) and the result
is then placed as the last 5 bytes of word 68 (171028)= Words 69
through 74 in Figure 26 are similarly translated from relocatable words
6 through 14 in Tiguve 23, Word 75 in Figure 26 is a machine instruc-

tion with two addresse it is translated from relocatable words 15

]
we

through 18 in Figure 23. Relocatable word 15, which contains the op~-

3

53

code of the instruction, becomes the first byte of word 75. Reloca-
table word 16 contains an index (000108) to the Common Symbol Table

(CST). At the 8th location relative to address CST (20008) in Figure
25, the absolute address is found to be 10010, whose symbolic address

8

name is ARR. Since field II is 1, address 10010, is incremented by

8
the contents of field INC to become bytes 2 through 6 of word 75 of
the output buffer (104648). Relocatable word 17, which contains the
index of the instruction, is translated without modification to byte
7. Relocatable word 18 contains an index (000208) to the Undefined
Symbol Table (UST). At the 16th location relative to address UST
(30008) as shown in Figure 25, the index is found to be 5 and symbolic
name to be DOT. This index is the address (00058) relative to the
location DST (10008) of the Defined Symbol Table. At this location
(10058), absolute address 242328 is found. Since field II contains

0, no address modification is required. This absolute address is entry

point DOT.

5.3 Configuration

The configuration of the microprogrammed loader is shown in
Figure 28 except for the control part which is to be shown subsequently.
Main memory M has address register AR and storage register SR. Registers
READ and WRITE are used to initiate a memory read or memory write,
respectively. The relocatable elements and the input and output buffers
are stored in the memory. There are eight index registers, X1, X2,...X8,
which store the table and buffer addresses during translation. Registers
0P, FS, and II store the OP field, FS field, and the II field, respec-

tively, of a relocatable word. Unpacking of a relocatable word and

54

X1 (1-15) AR(1-15)
X2(1-15)
X3(1-15) READ Main Memory ;
|
X4 (1-15) WRITE M(0-32767,1-36)
X5(1-15)
X6 (1~15) I
SR (1-36)
X7 (1-15) “SRYAD)
X8(1-15)
B (ADR) iB(IN)
]
A(1-36) ¢ B(1l-51)
1 15 16 51
OP(1-3) FS(1-4) II(1-2)
SH UNPACK
Cl(1-4)| | c2(1-4)] | €3(1-4)
Figure 28 Configuration for Translating Relocatable Code

55

address modification of its address part are performed in registers

A and B. Single-bit register SH indicates that register B or cas-
register A-B is shifted to the left according to register SH containing
a 0 or 1, respectively. Single~bit register UNPACK is a control
register for calling the unpacking sequence. In addition, there are

three counters Cl, C2, and C3.

Comment, configuration of the translator (8)
Register, A(1-36), Saccumulator
B(1-51), $unpacking register
AR(1-15), $address register
SR(1-36), $storage register
X1(1~15), $store the INC field
X2(1~15), Sstore INPUT address
X3(1-15), S$store OUTPUT address
X4(1-15), S$store CST
X5(1~15), Sstore UST
X6(1~15), $store DST
X7(1-15), $store subprogram address
X8(1-15), $temporary storage
OP(1-3), Sop-register
FS(1=4), Sfield size register
IT1(1-2), Sincrementing indicator
C1(1l-4), Scount left shifts in casregister AB
c2(1-4), Scount! leftshifts in register B
C3(1-4), S$count leftshifts in register A
SH, $shift-control register

UNPACK, $control register

56

READ, Smemory read register
WRITE, Smemory write register
Subregister, B(ADR)=B(1-15), $address part of unpacking register
B(IN)=B(16-51), $input part of unpacking register
SR(AD)=SR(22-36) $address part of storage register
Memory, M(AR)=M(0-32791,1-36) S$main memory

Casregister, AB(1~87)=A-B

5.4 Sequence charts

The translation algorithm in Figure 27‘is now converted
into sequence charts. Block diagram in Figure 29 shows that the trans-
lation is organized into four sequences: initialization, fetch, address
modification, and unpacking. The sequence charts are shown in Figures
30 to 33. As indicated by the dotted lines, the unpacking sequence
is called during the fetch sequence and the address modification sequence.
The initialization sequence initializes the translation. The fetch
sequence fetches a relocatable word, unpacks it and decodes it. The
address modification sequence performs the address modification. The
unpacking sequence performs the task of reading a relocatable word
out of the input buffer, shifting casregister AB to the left, and storing
a machine instruction into the output buffer.

It is assumed that the relocatable element and the buffers
are initially in the memory. The relocatable element is in the form
of a string of digits as shown in Figure 24, The addresses of the
tables and buffers are in the index registers as described below.
(a) dinput buffer location in register X2,
(b) output buffer location in register X3,

{¢c) CST location in register X4,

ot

8

Initialization
Seguence

Fetch
Sequence

Unpacking
Sequence

Address -
Modification
Sequence

Figure 29

" F'low chart showing the four sequences

for translation of relocatable code

to executable code

— YL - - - —

57

58

(d) TUST location in register X5,
(e) DST location in register X6,

(f) subprogram address in register X7,

In the sequence charts, a memory read will be indicated
with the CDL statement
SR€-M(AR) .
A memory write will be indicated similarly as
M(AR) ¢-SR.
This is done for clarity alone. The agctual read of memory is initiated
by setting the register READ to one (READ--1) while the memory write
is initiated by setting the register WRLITE to one (WRITE-~1), The trans-

fer of information occurs as a result of this,

5.4,1 Initialization sequence

The initialization sequence as shown in Figure 30 per-
forms five tasks. It reads the first word out of the input buffer
(location in register X2) and stores it in subregister B(IN). It places
the subprogram address in register X7 into subregister B(ADR). It
increments register X2 by 1. It resets register A to 0. And it sets
the initial contents of counter Cl, C2, and C3 to be 5, 12, and 7,
respectively,

Counter Cl counts the number of leftshifts of casregister
AB in bytes. The shifting of the 5=byte subprogram address from sub-
register B(ADR) to subregister A(22-36) is controlled by setting
counter Cl to 5 and then counting down until it reaches 0. Counter
C2 counts the number of leftshifts of register B in bytes. The indi-

cation to read the next word from the input buffer into subregister

Figure 30

59

Start

AR<~-X2

SR<~~M (AR)

B (IN)<~--SR

v
B (ADR) <=-X7,

X2=%—countup X2,

A<—-=0

\L

CZ&"""’"]‘Z)

Cl€--5

Sequence chart for the initialization
sequence

60

B(IN) is given by setting counter C2 to 12 and then counting down

until it reaches 0. Counter C3 counts the number of bytes that are
shifted into register A where machine instruction is being assembled.
The five leftshifts required to complete the first machine instruction
in register A is controlled by setting counter C3 to 7 and then counting

up until it reaches 12,

5.4.2 Fetch sequence

The fetch sequence as shown in Figure 31 performs four tasks.
It shifts the word in subregister B(IN) the number of byte positions
to the left indicated by counter Cl so that the next relocatable word
is now left-adjusted in register B. By making this leftshift occuring
in casregister AB, it also shifts the address or data in the left
part of register B into register A. It then transfers the contents of
OP, FS, and II fields in subregister B(1-3), B(4-7), and B(8-9) to
registers OP, FS, and II, respectively. Since these three fields in
subregister B(1-9) are of no further use, register B is leftshifted
3 byte positions so that the FLD field of the relocatable word is left-
adjusted in register B.

In the above tasks, there are two left shifts; one in register
B and the other in casregister AB. These two shifts are indicated by
register SH containing O and 1, respectively. Such a leftshift is also
required in the address modification sequence. For convenience, a

subsequence called the unpacking subsequence is formed. This sub-

sequence is "called" by setting register UNPACK to 1 and "returns"
to the calling sequence by resetting register UNPACK to O in the

subsequence. After the sequence register UNPACK is set to 1, the

Figure 31

UNPACK=<--1

OP<—*B(1—3%
FS<F—B(4“7X

II<=«B(8—9%

Cl=-=3

v

SH<--0

UNPACK<--1

&(;____.
(imenerco J 4

Sequence chart for the fetch sequence

61

62

sequence constantly examines register UNPACK and waits for its contents
to become 0. When register UNPACK is being set to 1, register SH
should also be set to 0 or 1 in order to select one of the two possible

leftshifts.

5.4,3 Unpacking subsequence

The unpacking subsequence as shown in Figure 32 performs four
tasks. The first task carries out the leftshift as described by the
following conditional micro-statement.

IF (SH=0) THEN (B¢-3 shl B) ELSE (AB4-3 shl AB)
and decrements counter Cl until it reaches 0, When counter Cl becomes
0, register UNPACK is reset to 0. The second task is to read a word
out of the input buffer located by register X2 into subregister B(IN);
this is controlled by counter C2. When counter C2 reaches 0, reading
of the word from the input buffer is carried out. The third task is
to store a machine instruction assembled in register A into the output
buffer located by register X3; this is controlled by counter C3. When
counter C3 reaches 12, storing of the assembled instruction in register
A is carried out. This can logically occur only after Cl becomes zero.
The fourth task is waiting. As shown in Figure 32, there is a waiting
loop during which the UNPACK subsequence constantly examines register
UNPACK and waits for its contents to become 0.

It should be noted that in order to call the UNPACK sub-
sequence, register UNPACK should be set to 1, register SH should be

set to 0 or 1, and counter Cl should be set to a certain initial value.

5.4.4 Address modification sequence

The address modification sequence as shown in Figure 33 per-

forms the operations specified by the OP and II fields on the operands

Gﬂaiting lopp)

o easan o reem s v s

o
]
4

IF (SH=0) THEN (B¢--3 shl B)
ELSE (AB<--3 shl AB),
IF(SH=1) THEN(C3<~-countup C3),

C2=<—-~countdn C2,

Cle——-countdn Cl

C2<-~12,
AR4-~X2

SR<--M(AR), |

X2€~-=countup X2§
& L
B (IN)<--SR |

Tz
S AN
Cl=0

i

Figure 32

C3¢-=0,

ARG==¥3
¥
X3€¢--countup X3,

SR€——1
¥
M(AR) «==SR

w4 e
% o

| unPACKe--0

Sequence chart for the unpacking subsequence

63

64

sequence

B
e I { op 5 STOP
3 2 I 3 4 ¥
| X8<~-~B (ADR) X8€—--B (ADR) X8€--B (ADR)
7 ¥ 02
B (ADR) <-X8 add X7 AR<¢-=X8 add X4 AR<~=X8 add X5
A)
SR€¢--M(AR) SR<~-M(AR)
¥ R
X8<~-SR (AD) X8<~~SR (AD)
¥
AR«<-~-X8 add X6
¥
SR<—-M (AR)
v
X8<--SR (AD)
’ l
X
iI=D -
Cl<--FS X1l<--0
¥
SHe-~0
UNPACK<--1
UNPACK=0
: X1<--B (ADR)
e o,
II=1 =
| X1<--X1"' |
¥
Xl<€--countup X1
P ;
B (ADR) <=--X8 add X1
‘Cl<-mFS
&
Figure 33 Sequence chart for the address modification

65

in the FLD and INC fields. As shown in Figure 33, if the OP field
contains 1, there is no address modification. If the OP field contains
2, the address in subregister B(ADR) is incremented by the subprogram
address in register X7. Whether the OF field is 1 or 2, the contents
of the FS field are transferred to counter Cl.

1f the OP field contains 3, the index in subregister B(ADR)
is incremented by the location of the Common Symbol Table in register
X4, The word is read out of this memory location and stored in register
X8, 1If the OP field contains 4, the index in subregister B(ADR) is
incremented by the location of the Undefined Symbol Table in register
¥X5. At this location is another address. This address is read out of
the memory, stored in register X8, and incremented by the location of
the Defined Symbol Table in register X6. Then, the contents of this
memory location are read out of the memory and stored in register X8.

If the OP field contains 3 or 4 and if the ITI field is not
0, an. addition or a subtraction is yet required. The contents of
the INC field are first shifted into subregister B(ADR) and are then
added (if II is 1) to or subtracted (if II is 2) from the contents
in register X8 with the result stored in subregister B(ADR). The
subtraction is performed by addition of 2's complement of the sub-
trahend. Whether the OP field is 3 or 4, the contents of the FS field
are transferred to counter Cl.

At this point, the address modification sequence is completed

and returns to the fetch sequence.

5.5 Microprogram control configuration

The block diagrasm in Figure 34 shows the configuration of the

RETURN (1-8)

3 + 3 CAR(1-8)
conteopl

Memory,

CM(CAR) =

CM(0-255,1-36)

4

F(1-36)

—

Decoders

| —

Clock,

and .

P (0-3)

matrix

RUN

Figure 34

te——qMC (0-3)

T 1

T

S

control signals

Block diagram showing the configuration

of the control unit

66

control unit. Control memory CM has a capacity of 256 36-bit words
with address register CAR and buffer register F. The 8-bit register
RETURN stores a control memory address for subroutine return. The
four-phase clock P(0-3) in conjunction with the single-bit registers
RUN and C, and the 4-bit register MC generates the control signals.
Switch START initiates the micro~programmed computer. The above con-

figuration is now described by the following CDL statements.

Comment, configuration for the microprogram control)]
Register, CAR(1-8), Scontrol memory address register
F(1-36), Scontrol word register
RETURN (1-8), Smicro-subroutine return register
MC(0-3), Sregister for sequencing main memory cycles
D, $memory cycle walt register
RUT, $start-stop register
Subregister, F(ADS)=F(1-8) $address portion of the control word
Memory, CM{CAR)Y=CM(0~255,1-36),
Switch, START (ON) , Sstart switch

Comment, each control memory cycle coincides with one clock cycle, and
each main memory cycle coincides with four control memory cycles.

Clock, P(0-3}, $four-phase clock

5.6 Timing and Control Signals

Each main memory cycle is chosen to comsist of four control
memory cycles, and each control memory cycle coincides with one clock
cycle. Therefore, there are 4 steps in each control memory cycle and
16 steps in each main memory cycle. The control signals for these

16 steps are described by the following sequence of 16 labels,

68

Comment, control signals expressed by the labels (10)
/MC(0)*P (0) *RUN/ Sbeginning of a main and a control memory cycle

/MC (0) *P (1) *RUN/

/MC(0) #P(2) *RUN/

/MC(0) *P (3) *RUN/ S$end of a control memory cycle

JMC (1) *P (0)*RUN/ $beginning of a control memory cycle
/MC(L)Y*P(1)*RUN/

/MC(1)*P(2)*RUN/

/MC (1) *P(3)*RUN/ Send of a control memory cycle
/MC(2)*P(0)*RUN/ S$beginning of a control memory cycle
/MC(2)*P(1)*RUN/

/MC(2)*P(2)*RUN/

/MC(2)%P(3)*RUN/ $end of a control memory cycle
/MC(3)%P (0) *RUN/ $beginning of a control memory cycle
/MC(3)*P (1) *RUN/

/MC{(3)#P(2)*RUN/

/MC(3)*P(3)*RUN/ D<¢-0, S$end of both memory cycles

In the above labels, the four steps in each control memory cycle are
controlled by the four phases of clock P(0-3) and the four control
memory cycles in each main memory cycle are controlled by the four
states of ring counter MC(0-3). Register RUN is employed to activate
the control signals for the 16 steps in a main memory cycle as indi-
cated in Figure 34,

During each main memory cycle, an instruction is read out of
or written into the main memory. It is now specified that the transfer

of the main memory address to vegister AR and the initiation of the

main memory read or write must occur during the second step (i.e.,

/MC(0)*P(1L)*RUN/). TFor a read operation, the word is available at

buffer register SR during the sixth step (i.e., /MC(1)*P(1)*RUN/).

For a write operation, the word to be stored into the memory is trans-

fered into buffer register SR before the 12th step (/MC(2)*P(3)*RUN/).
If certain micro-operations occur in every control memory

cycle, the following sequence of four labels is used,

/P(0)*RUN*D'/ F&-CM(CAR) $beginning of a control memory cycle
/P (1) *RUN*D/
/P (2)*RUN*D'/

/P(3)*RUN*D"'/ Send of a control memory cycle

In the above sequence of labels, register D is used to control the
advance or stop of the 4 steps in a control memory cycle. When regis-
ter D contains a 0, the sequence of the labels exist; otherwise, it
disappears.

During each control memory cycle, a micro-instruction is read
out of the control memory. It is now specified that the transfer of
the control memory address to register CAR and the initiation of the
control memory read must occur during clock phase P(3) of the preceeding
control memory cycle, and the control word becomes available at buffer
register F during the first clock phase P(0) of the current control
memory cycle. Micro-operations activated by the micro-instruction
in register are executed during clock phases P(1-3) of the current
control memory cycle.

Register D is automatically set to zero at the end of each

main memory cycle (/MC(3)*P(3)*RUN/). Thus, when waiting to the

70

beginning of the main memory cycle is required, register D is set to
one to stop generation of the control signals during a control memory
cycle, but the control signals for the main memory cycle continue.

If a micro-instruction is fetched at the beginning of a main memory
cycle and register D is set to one at the same time, then the micro-
instruction remains in register F for one main memory cycle, as will

be later described.

5.7 Control word format

Table 3 shows the format of the control word. The 36 bits of

each control word in register F are divided into three groups:

(a) field F(1-8) which contains a control memory address,
(b) field